Émerson dos Reis Pereira Carlos Alberto Moreira dos Santos

Sequência de Ensino Investigativo: Eletromagnetismo e a geração de energia nas usinas hidrelétricas

Guia didático para professores de Ciências do Ensino Fundamental Anos Finais

Guia didático para professores de Ciências do Ensino Fundamental Anos Finais

Sequência de Ensino Investigativo:

Eletromagnetismo e a geração de energia nas usinas hidrelétricas

1ª edição

Lorena EEL/USP 2023

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

Pereira, Émerson dos Reis

Sequência de ensino investigativo [livro eletrônico] : eletromagnetismo e a geração de energia nas usinas hidrelétricas : guia didático para professores de ciências do ensino fundamental : anos finais / Émerson dos Reis Pereira, Carlos Alberto Moreira dos Santos. -- 1. ed. -- Cruzeiro, SP : Ed. dos Autores, 2023.

PDF

Bibliografia. ISBN 978-65-00-67962-5

- 1. Ciências (Ensino fundamental)
- 2. Eletromagnetismo Estudo e ensino 3. Energia hidrelétrica I. Santos, Carlos Alberto Moreira dos. II. Título.

23-153195 CDD-372.35

Índices para catálogo sistemático:

1. Ciências : Ensino fundamental 372.35

Aline Graziele Benitez - Bibliotecária - CRB-1/3129

Índice

01
Apresentação04
02
Introdução
03
Afinal de contas O que é essa tal Alfabetização Científica?
04
Como o professor pode verificar se o processo de Alfabetização Científica está de fato ocorrendo durante as atividades?
05
O Ensino por investigação
06
A Sequência de Ensino Investigativo proposta para o tema eletromagnetismo e a geração de energia nas usinas hidrelétricas
07
Considerações finais
08
Referências
09
Apêndice

APRESENTAÇÃO

O presente guia didático para professores de Ciências é o produto educacional vinculado a dissertação de mestrado intitulada "Alfabetização Científica por investigação visando o desenvolvimento de Habilidades Cognitivas no Ensino Fundamental II: Energia e Eletromagnetismo". A pesquisa que deu origem a este guia foi desenvolvida no Programa de Pós-Graduação em Projetos Educacionais de Ciências da Escola de Engenharia de Lorena, da Universidade de São Paulo – EEL/USP.

A ideia deste guia é disponibilizar uma Sequência de Ensino Investigativo sobre o tema "Energia e Eletromagnetismo", conteúdo previsto no currículo de Ciências para o 8º ano do Ensino Fundamental, com o intuito de apresentar o *software* educacional "Laboratório de Eletromagnetismo de Faraday (2.07.1)", do projeto PhET, da Universidade do Colorado, e auxiliar os professores a utilizá-lo de forma investigativa, visando favorecer o processo de Alfabetização Científica nos estudantes.

Para facilitar a análise e a verificação do processo de Alfabetização Científica, bem como o desenvolvimento das habilidades cognitivas investigativas durante as atividades propostas, este material apresenta modelos de ferramentas que permitem averiguar a presença de indicadores da Alfabetização Científica e classificar as habilidades cognitivas apresentada pelos estudantes em três níveis.

INTRODUÇÃO

Atualmente, a Base Nacional Comum Curricular (BNCC) prevê que o Ensino de Ciências, no âmbito da educação escolar, tem como objetivo desenvolver o Letramento Científico, ou seja, aproximar os estudantes dos procedimentos da investigação científica, por meio de atividades investigativas, para torná-los capazes de compreender e transformar o mundo baseados nos conhecimentos e processos científicos (BRASIL, 2018).

O conceito de Letramento Científico definido pela BNCC assemelha-se com a definição de Alfabetização Científica defendida por vários pesquisadores (REIS; CAVALCANTE; OLIVEIRA, 2020). Desse modo, vamos adotar os termos Alfabetização Científica e Letramento Científico como sinônimos. A escolha pelo primeiro termo se deu pela ideia de que a alfabetização deve ser capaz de proporcionar aos homens a leitura do mundo em que estão inseridos, proposta por Paulo Freire (1980).

Com a evolução das Tecnologias Digitais da Informação e Comunicação, os laboratórios virtuais e as simulações são consideradas ferramentas com potencial para o ensino com abordagem investigativa, possibilitando que os estudantes se tornem protagonistas no processo de ensino e aprendizagem (PAULA, 2017).

Nessa perspectiva, as atividades experimentais utilizando *softwares* educacionais podem favorecer a aprendizagem significativa dos conceitos que envolvem a Física, uma vez que leva os estudantes a compreenderem alguns fenômenos por meio da simulação e modelos científicos, contribuindo para o desenvolvimento de habilidades cognitivas investigativas (DORNELES; ARAÚJO; VEIT, 2012; NEIDE *et al.*, 2019; ARAÚJO *et al.*, 2021).

Afinal de contas... O que é essa tal Alfabetização Científica?

O indivíduo alfabetizado cientificamente é aquele capaz de ler, interpretar e entender os processos e os conhecimentos científicos para emitir opiniões fundamentadas neles (LORENZETTI; DELIZOICOV, 2001).

Desse modo, a BNCC (BRASIL, 2018) prevê que o Ensino de Ciências da Natureza deve ser capaz de desenvolver o Letramento Científico nos estudantes, ou seja, não apenas "envolver a capacidade de compreender e interpretar o mundo (natural, social e tecnológico), mas também de transformá-lo com base nos aportes teóricos e processuais das ciências" (BRASIL, 2018, p. 321).

Para isso, os conhecimentos científicos precisam ser entendidos para fornecer subsídios capazes de auxiliar as tomadas de decisões dos estudantes e torná-los cidadãos ativos em um mundo cada vez mais dinâmico em que estão inseridos (LORENZETTI; DELIZOICOV, 2001; ROSA; LANGARO, 2020). Nesse contexto, as aulas de Ciências da Natureza no Ensino Fundamental devem aproximar os estudantes das práticas e procedimentos utilizados nas investigações científicas (BRASIL, 2018).

Mas como o professor pode verificar se o processo de Alfabetização Científica está de fato ocorrendo durante as atividades?

O grande desafio dos professores é verificar e avaliar se a Alfabetização Científica está sendo favorecida pelas atividades propostas. Para verificar se as habilidades vinculadas ao entendimento do tema estão favorecendo a Alfabetização Científica, Sasseron (2008) propõe os indicadores demonstrados no Quadro 1.

Quadro 1 – Descrição dos indicadores da Alfabetização Científica propostos por Sasseron (2008)

Indicador da Alfabetização Científica		Descrição dos Indicadores por Sasseron (2008)					
	Seriação de Não prevê, necessariamente, uma ordem que deva ser est para as informações: pode ser uma lista ou uma relação o trabalhados ou com os quais se vá trabalhar.						
Grupo 1	Organização de Informações	Surge quando se procura preparar os dados existentes sobre o problema investigado. Este indicador pode ser encontrado durante o arranjo das informações novas ou já elencadas anteriormente e ocorre tanto no início da proposição de um tema quanto na retomada de uma questão, quando ideias são relembradas.					
	Classificação de informações	Aparece quando se busca estabelecer características para os dados obtidos. Por vezes, ao se classificar as informações, elas podem ser apresentadas conforme uma hierarquia, mas o aparecimento desta hierarquia não é condição sine qua non para a classificação de informações. Caracteriza-se por ser um indicador voltado para a ordenação dos elementos com os quais se trabalha					
20 2	Raciocínio Lógico Compreendendo o modo como as ideias são desenvolvid apresentadas. Relaciona-se, pois, diretamente com a forma co pensamento é exposto.						
Grupo	Raciocínio Proporcional	Dá conta de mostrar o modo que se estrutura o pensamento, além de se referir também à maneira como variáveis têm relações entre si, ilustrando a interdependência que pode existir entre elas.					
	Levantamento de Hipóteses	Aponta instantes em que são alçadas suposições acerca de certo tema. Este levantamento de hipóteses pode surgir tanto como uma afirmação quanto sob a forma de uma pergunta (atitude muito usada entre os cientistas quando se defrontam com um problema)					
	Teste de Hipóteses	Trata-se das etapas em que as suposições anteriorment levantadas são colocadas à prova. Pode ocorrer tanto diante d					
Grupo	Connecimentos anteriores. Aparece quando, em uma afirmação qualquer promão de uma garantia para o que é proposto. Isso afirmação ganhe aval, tornando mais segura.						
	Previsão	É explicitado quando se afirma uma ação e/ou fenômeno que sucede associado a certos acontecimentos.					
	Explicação	Surge quando se busca relacionar informações e hipóteses já levantadas. Normalmente a explicação é acompanhada de uma justificativa e de uma previsão, mas é possível encontrar explicações que não recebem estas garantias. Mostram-se, pois, explicações ainda em fase de construção que certamente receberão maior autenticidade ao longo das discussões.					

FONTE: Adaptado de Sasseron (2008).

De acordo com o quadro, os indicadores podem ser divididos em três grupamentos, a saber: *i)* que está diretamente ligado a organização, seriação e classificação dos dados obtidos; *ii)* está relacionado a organização do pensamento de forma lógica e objetiva para os fenômenos em estudo; e o *iii)* ao estabelecimento de relações existentes entre as variáveis para explicar os fenômenos observados.

Para facilitar a análise e verificar quais os indicadores da Alfabetização Científica aparecem durante as atividades propostas na Sequência de Ensino Investigativo proposta neste guia, foi criado um quadro disponível no Apêndice A.

Para Brito e Fireman (2016) o ensino por investigação, baseado em atividades que os estudantes precisam solucionar problemas, pode ser considerado um dos meios didáticos para promover a Alfabetização Científica no Ensino Fundamental.

O Ensino por investigação

O ensino por investigação não deve ter como objetivo formar cientistas, mas buscar aprimorar as habilidades cognitivas dos estudantes, o que está de acordo com o exposto por Zômpero e Laburú, que afirmam:

O ensino por investigação, que leva os alunos a desenvolverem atividades investigativas, não tem mais, como na década de 1960, o objetivo de formar cientistas. Atualmente, a investigação é utilizada no ensino com outras finalidades, como o desenvolvimento de habilidades cognitivas nos alunos, a realização de procedimentos como elaboração de hipóteses, anotação e análise de dados e o desenvolvimento da capacidade de argumentação. (ZÔMPERO; LABURÚ, 2011, p. 73).

Nesse contexto, as técnicas de pesquisa, trabalhadas durante as práticas pedagógicas utilizando a investigação, podem aproximar os estudantes dos procedimentos metodológicos, ao mesmo tempo que promovem a aprendizagem dos conceitos científicos (ZÔMPERO; LABURÚ, 2011). Vale ressaltar que, durante as atividades investigativas, o professor deve dar liberdade para os estudantes delinearem as atividades, e discutirem e defenderem suas ideias. (MOURÃO; SALES, 2018).

O estudo de Zômpero, Gonçalves e Laburú (2017, p. 420) denomina "habilidades cognitivas para investigação científica a capacidade de observar, registrar, analisar dados, comparar, perceber evidências, fazer inferências, concluir, aprimorar o raciocínio e argumentar".

Para organizar e avaliar se essas habilidades cognitivas estão sendo promovidas durante as práticas pedagógicas de investigação, Zômpero, Laburú e Vilaça (2019), alicerçados nos estudos de Pedaste *et al.* (2015), estabeleceram as etapas/domínio que devem ser analisadas pelo professor ao avaliar as atividades investigativa, como mostra o Quadro 2.

Quadro 2 - Etapas a serem avaliadas pelos professores durante as atividades investigativas

ETAPAS INVESTIGATIVAS							
	ETAPAS/DOMÍNIO	DESCRIÇÃO					
Conceitualização	Problema	Identificação dos elementos constituinte do problema					
Conceitu	Hipóteses	Emissão de hipóteses com base no problema					
0	Planejamento para investigação/Confronto de hipóteses	Realiza um planejamento de atividades coerente com a hipótese emitida					
Investigação	Percepção de evidências	Identificam evidências e as relacionam para confirmar ou não as hipóteses					
_ u	Registro e análise de dados	Registra e analisa dados com base em evidências					
usão	Estabelecem conexão entre evidências e conhecimento científico	Explicam as evidências com base no conhecimento científico					
Conclusão	Comunicação dos resultados	Coordena dados com o problema e hipóteses e conhecimento científico para elaborar uma conclusão (elementos da investigação)					

Fonte: Zômpero, Laburú e Vilaça (2019, p. 205)

Segundo o quadro, as etapas investigativas podem ser divididas em: *i*) conceitualização, que é a identificação do problema e o levantamento de hipóteses; *ii*) investigação, que envolve o planejamento para a investigação, identificação das evidências, registro e análise dos dados; e *iii*) conclusão, momento para estabelecer conexões entre as evidências e o conhecimento científico para a comunicação dos resultados.

Para avaliar e classificar, em três níveis, as habilidades cognitivas investigativas apresentadas durante as atividades, sugerimos utilizar o instrumento analítico adaptado de Zômpero, Laburú e Vilaça (2019), disponível no Apêndice B.

Para proporcionar os itens descritos acima, é necessário organizar as atividades em Sequências de Ensino Investigativo que ofereça diferentes práticas pedagógicas, principalmente as que envolvem a experimentação e os recursos tecnológicos (CARVALHO, 2018).

A Sequência de Ensino Investigativo proposta para o tema eletromagnetismo e a geração de energia nas usinas hidrelétricas

Durante as aulas e as atividades, propostas na Sequência de Ensino Investigativo, os estudantes devem trabalhar em equipes com aproximadamente 5 integrantes cada uma.

Cada equipe deve escolher um "escrivão", ou seja, um estudante para registrar as discussões e escrever a(s) hipótese(s) a ser(em) investigada(s), bem como descrever os experimentos e os resultados das investigações por meio das explicações dos fenômenos estudados.

1 PRIMEIRA ETAPA: Levantamento dos conhecimentos prévios dos estudantes.

Duração: 1 aula de 50 minutos.

Essa etapa pode ser realizada de forma oral, mas é importante registrar as ideias principais em forma de palavras-chaves no quadro, estimule os estudantes a participarem e a discutirem o assunto sem acessar fontes de informações. Provavelmente aparecerão conceitos errados ou incompletos, não se preocupe em corrigi-los nesse momento, explique que todos esses assuntos serão tratados no decorrer das aulas.

- 1) Baseado no que você sabe, responda. É possível criar ou destruir energia?
- 2) De onde vem a maior parte da energia elétrica consumida no Brasil? Ela pode ser considerada renovável ou não renovável?
- 3) Você já parou para analisar quantos e quais equipamentos em sua casa utilizam energia elétrica? Como essa energia é transformada por esses aparelhos?
- 4) Você sabe quais são os grandes desafios na geração de energia elétrica?
- 5) Você sabe a relação que o ímã tem com a geração de energia elétrica?
- 6) Você sabe o que é indução eletromagnética?

2 SEGUNDA ETAPA: Abordagem conceitual sobre eletromagnetismo

Duração: 3 aulas de 50 minutos.

Iniciar a aula com a discussão sobre o campo magnético do imã e apresentar a Figura 1 e Figura 2.

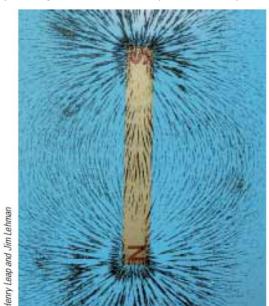
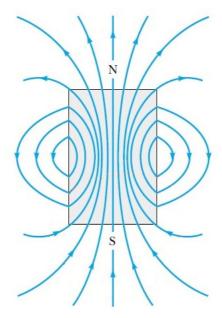



Figura 1 - Campo magnético do ímã representado por limalha de ferro.

Fonte: Serway, Jewett (2003).

Figura 7: Campo magnético do ímã de barra

Fonte: Adaptado de Serway, Jewett (2003).

Após explicar como funciona o campo magnético em um imã, lançar o seguinte questionamento:

É possível gerar um campo magnético a partir de uma corrente elétrica. O físico e químico Michael Faraday concluiu que o oposto também pode ocorrer, ou seja, a manipulação de um campo magnético não uniforme pode gerar corrente elétrica, mas como é possível gerar energia elétrica utilizando um imã?

Orientar os estudantes a levantarem as hipóteses e registrá-las no caderno sem recorrer às fontes de informações. É importante destacar que pode ser uma afirmação ou outra pergunta para a resolução do problema e não é necessário estar correta, pois serão confirmadas ou não por meio de pesquisas no livro e na internet.

Após todas as equipes terminarem de escrever as hipóteses, peça para elas exporem as suas ideias oralmente.

Em seguida, deixe as equipes buscarem informações no livro e na internet para refutar ou confirmar as hipóteses levantadas por eles.

Cada equipe deve explicar a confirmação ou não das hipóteses utilizando o conceito de Indução Eletromagnética e entregar um resumo sobre o tema trabalhado baseado em pelo menos duas fontes de pesquisa.

Em seguida, lançar as seguintes perguntas oralmente para verificar a aprendizagem:

- 1 Um imã parado próximo a uma espira pode gerar corrente elétrica? Justifique.
- 2 A energia gerada pelo imã é criada ou transformada?
- 3 Quais são as transformações da energia que ocorrem nesse processo?

Para cada uma das perguntas, espera-se as seguintes respostas:

- 1 Não. Caso eles não expliquem o motivo, questione-os perguntando por quê? Nesse momento, é importante deixar claro que o imã precisa estar em movimento de vai e vem ou girando para realizar a troca de polos próximos à espira.
- 2 Transformada. Lembrá-los do princípio físico que rege a geração de energia, o princípio da conservação de energia, ou seja, ela nunca é criada ou destruída, sempre transformada.
- 3 A energia cinética gerada pelo movimento do imã é transformada em energia elétrica na espira. Caso isso não ocorra, leve os estudantes a refletirem um pouco dizendo que o imã precisa fazer um movimento, qual é a energia associada a movimento?

Para melhor assimilação do conteúdo, passar o vídeo do link, entre 6:25 minutos até 10:25 minutos – nesse momento o vídeo aborda o campo magnético do imã.

https://www.youtube.com/watch?v=fHATn0Wzl k

Passar também o vídeo do link abaixo Indução Eletromagnética Lei de Faraday. https://www.youtube.com/watch?v=Rba9EdXO368

3 TERCEIRA ETAPA: Atividade experimental no simulador PhET

Duração: 2 aulas de 50 minutos

50 minutos para os questionamentos e registro das hipóteses; o experimento para confirmar ou refutar as hipóteses levantadas e a confecção do vídeo (Tarefa extraclasse); 25 minutos para verificação da tarefa por meio da apresentação dos vídeos; 25 minutos para associar os processos do simulador com os que ocorrem em uma usina hidrelétrica.

Após orientar os estudantes a discutir e registrar as hipóteses, apresente as imagens em uma apresentação no *Microsoft Office PowerPoint* com os questionamentos abaixo.

Lançar o questionamento e aguardar 10 minutos para as equipes organizarem as hipóteses e o registro. Não indique o site do simulador no início, é importante que elas possam levantar hipóteses e depois ir buscar a resolução no livro, na internet e, principalmente, no simulador para os seguintes questionamentos:

i) Primeiro questionamento:

Observe que a bússola, objeto que está acima na Figura 3, está com o polo norte (cor vermelha) para a esquerda e o sul (cor branca) para a direita, totalmente oposto ao do ímã (objeto que está abaixo).

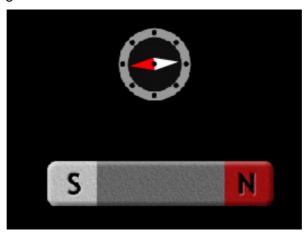


Figura 3 – Ambiente do simulador "Ímã em barra"

Fonte: PhET Interactive Simulations, Universidade do Colorado (2012)

O que vai acontecer com a bússola se o ímã virar e inverter os polos?

ii) Segundo questionamento:

A Figura 4 apresenta um ímã (objeto que está à esquerda) parado ao lado de uma espira conectada a uma lâmpada (objeto que está à direita).

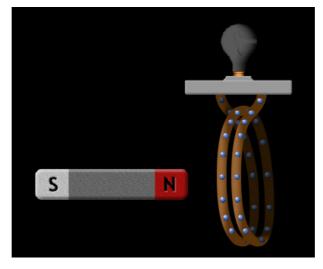


Figura 4 – Ambiente do simulador "Selonoide"

Fonte: PhET Interactive Simulations, Universidade do Colorado (2012).

O que vai acontecer se o ímã continuar estático, ou seja, parado? E se ele se movimentar na direção da espira e realizar um movimento de vai e vem?

iii) Terceiro questionamento:

Observe que a Figura 5, contendo uma torneira (objeto que está no canto superior do lado esquerdo), um ímã preso a uma roda d'água debaixo da bússola (objetos que estão no centro) e uma espira conectada a uma lâmpada (objeto que está à direita), apresenta um mecanismo semelhante ao que acontece nas usinas hidrelétricas.

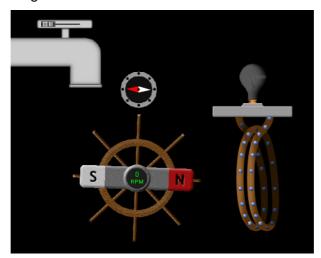


Figura 5 – Ambiente do simulador "Gerador"

Fonte: PhET Interactive Simulations, Universidade do Colorado (2012).

Como gerar energia para acender a lâmpada da imagem? Quais as transformações de energia ocorrem no processo até chegar à energia luminosa?

Após os questionamentos e levantamento das hipóteses, disponibilizar para os estudantes as instruções para realização dos experimentos no simulador, que se encontra disponível no Apêndice C.

Cada equipe deve gravar a tela do simulador em um vídeo curto, de no máximo 5 minutos, explicando, por meio de uma narração, os experimentos e os conceitos envolvidos neles.

Socializar os vídeos com a turma e selecionar um deles para compartilhar com toda comunidade escolar em portais digitais ou redes sociais da escola.

Apresentar o funcionamento de uma usina hidrelétrica por meio do vídeo apresentado no link abaixo, iniciar a partir de 1:50 minutos até 5:50 minutos.

https://www.youtube.com/watch?v=iYGBeDcA2iE&t=155s

Após a socialização dos vídeos das equipes e do *link*, levar os estudantes a associar os processos do simulador no último experimento com os que ocorrem em uma usina hidrelétrica. Para isso, utilize o exemplo que está sendo apresentado na Figura 6 e os questionamentos abaixo dela.

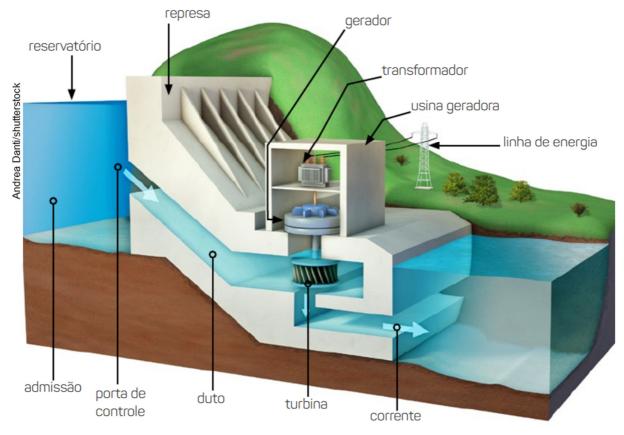


Figura 6 – Representação da parte interna de uma usina hidrelétrica.

Fonte: Farago (2020).

A partir da leitura da imagem, lançar os seguintes questionamentos:

- 1 Qual parte da hidrelétrica foi representada pela torneira no simulador?
 Qual é o tipo de energia que está presente nessa parte?
- 2 Qual parte da hidrelétrica foi representada pela queda d'água da torneira do simulador? Qual é o tipo de energia que está presente nessa parte?
- 3 Qual parte da hidrelétrica foi representada pela roda d'água no simulador? Qual é o tipo de energia que está presente nessa parte?

4 – Em qual parte da hidrelétrica ocorre a mudança de campo magnético gerado pela troca de polaridade do ímã, gerando corrente elétrica nas espiras? Quais os tipos de energia estão presentes nesse processo? Como ocorre a transformação de uma energia na outra?

Para cada uma das perguntas, espera-se as seguintes respostas:

- 1 O reservatório, a represa e a porta de controle. A energia presente nessa parte é potencial gravitacional. Caso não cheguem a essa conclusão, oriente-os perguntando: qual é a força que movimenta a água de uma parte mais alta para a mais baixa? Se eu virar um copo com água para baixo, qual é a força que faz a água cair?
- 2 O duto. A energia presente nessa parte é a cinética (de movimento). Caso não cheguem a essa conclusão, oriente-os perguntando: a água nessa parte está parada ou em movimento? Qual é a energia associada ao movimento?
- 3 A turbina. A energia presente nessa parte também é a cinética, movimento das turbinas.
- 4 Na usina geradora, passando pelo gerador e transformador. Os tipos de energia envolvidas nesse processo são a cinética (de movimento) e a elétrica. À medida que as turbinas giram com a passagem da água, grandes eixos com ímã são movimentados próximos a grandes bobinas (espiras = fios condutores elétricos) gerando energia por meio da indução eletromagnética.

4 QUARTA ETAPA: Vantagens e desvantagens das usinas de geração de energia elétrica

Duração: 1 ou 2 aulas de 50 minutos.

Inicie a aula lançando as perguntas abaixo para que os estudantes reflitam e levantem as possíveis hipóteses para as pesquisas. É importante que essa etapa seja realizada de forma oral, encorajando os estudantes a participarem e a discutirem o assunto.

É possível gerar energia em grande quantidade para abastecer a população sem causar impactos ambientais?

Pense e fale os tipos de usinas de geração de energia elétrica que você conhece e os impactos ambientais que elas podem causar?

Quais são as vantagens das diferentes usinas de geração de energia?

Qual seria a melhor maneira de gerar energia elétrica causando menor impacto ambiental?

Após a discussão, direcionar os estudantes a formularem possíveis hipóteses a respeito das vantagens e os impactos socioambientais de cada tipo de usina de geração de energia elétrica.

Nessa etapa, os estudantes podem formular hipóteses juntos, ou seja, na turma com todos os integrantes, incentive-os e direcione-os a elaborar o máximo possível (no mínimo uma para cada equipe). Se possível, escreva as hipóteses no quadro ou na lousa. Em seguida, deixe as equipes escolherem as hipóteses que queiram buscar respostas e soluções.

Pedir para cada equipe elaborar uma apresentação de no máximo 5 minutos explicando a confirmação ou não das hipóteses e justificar suas conclusões. Além da apresentação, entregar um resumo explicando o conteúdo trabalhado e pelo menos duas fontes de pesquisa, uma delas tem que ser o livro didático de ciências utilizado por eles na escola.

5 QUINTA ETAPA: Conscientização da sociedade sobre a necessidade de economizar energia.

Duração: 2 aulas de 50 minutos.

Na primeira aula, lançar o seguinte problema para as equipes:

Como conscientizar a sociedade em geral sobre a necessidade de economizar energia? Como orientar as pessoas a economizarem energia de forma consciente em suas residências, locais de trabalho, de lazer e estudo?

Deixe os estudantes a vontade para escolher a melhor maneira de fazer essa etapa, direcione-os para discutirem o assunto e definir o que irão fazer e apresentar (pode ser vídeo, cartaz, banner, jogo, flyer digital ou outros meios de preferência deles). O produto final deve ser realizado e confeccionado como atividade extraclasse (tarefa).

Na segunda aula, socializar o produto final de cada equipe para todos os estudantes da classe, *feedback* entre as equipes e, se necessário, ajustes.

Após a finalização do produto, divulgar os trabalhos por meio de plataformas digitais ou redes sociais da escola para conscientizar a comunidade.

CONSIDERAÇÕES FINAIS

O Ensino Investigativo, quando estruturado em sequência didática, apresentase como uma prática pedagógica capaz de favorecer positivamente o processo de Alfabetização Científica. Além do mais, tem potencial para beneficiar as manifestações das habilidades cognitivas investigativas dos estudantes nas categorias de conceitualização, investigação e conclusão.

A interação com os simuladores virtuais consegue proporcionar aos estudantes a visualização dos conceitos mais abstratos, como é o caso do eletromagnetismo, para favorecer a assimilação do fenômeno em estudo e tornar a Educação Científica mais efetiva.

Vale ressaltar que o objetivo dos laboratórios virtuais não é substituir os experimentos reais, mas ser utilizado como ferramenta para assessorar a prática pedagógica no processo de ensino e aprendizagem dos conceitos abstratos.

Nessa perspectiva, a ideia da Sequência de Ensino Investigativo é proporcionar resultados significativos na assimilação do tema "Energia e Eletromagnetismo", pelos estudantes do 8º ano do Ensino Fundamental, e criar um ambiente de mobilização para o processo de ensino e aprendizagem de modo a favorecer o processo de Alfabetização Científica.

Espera-se também, que o presente guia didático seja fonte de inspiração para professores, principalmente os de Ciências do Ensino Fundamental dos Anos Finais, que buscam atividades de investigação e experimentação com os estudantes em sala de aula, ou ainda, aos que buscam indicadores da Alfabetização Científica e do desenvolvimento das habilidades cognitivas investigativas em suas atividades.

REFERÊNCIAS

- ARAÚJO, E. S; NASCIMENTO, J. L. B.; SILVA, J. C.; BIM C. F. A. O uso de simuladores virtuais educacionais e as possibilidades do PhET para a aprendizagem de Física no Ensino Fundamental. **REnCiMa**, São Paulo, v. 12, n. 3, p. 1-25, abr./jun. 2021.
- BRASIL. Ministério da Educação. **Base Nacional Comum Curricular**. 2018. Disponível em: http://basenacionalcomum.mec.gov.br/. Acesso em: 21 ago. 2020.
- BRITO, L. O; FIREMAN, E. C. Ensino de ciências por investigação: uma estratégia pedagógica para promoção da alfabetização científica nos primeiros anos do ensino fundamental. **Revista Ensaio**, Belo Horizonte, v.18, n. 1, p. 123-146, jan-abr. 2016.
- CARVALHO, A. M. P. Fundamentos Teóricos e Metodológicos do Ensino por Investigação. **Revista Brasileira de Pesquisa em Educação em Ciências**, Belo Horizonte, v. 18, n3, p. 765–794, set/dez. 2018.
- DORNELES, P. F. T.; ARAUJO, I. V.; VEIT, E. A. Integração entre atividades computacionais e experimentais como recurso instrucional no ensino de eletromagnetismo em física geral. **Ciência & Educação**, Bauru, v. 18, n. 1, p. 99-122. 2012.
- FARAGO, G. org. Ensino fundamental anos finais, Ciências: 8º ano. Brasília: Edebê Brasil, 2020. (Coleção Rotas)
- FREIRE, P. Educação como prática da liberdade, São Paulo: Paz e Terra, 1980.
- LORENZETTI, L.; DELIZOICOV, D. Alfabetização científica no contexto das séries iniciais. **Ensaio Pesquisa em Educação em Ciências**, v. 3, n. 1, jun. 2001, p. 1-17.
- MOURÃO, M. F.; SALES, G. L. O uso do ensino por investigação como ferramenta didático-pedagógica no ensino de física. **Experiências em Ensino de Ciências** (**EENCI**), v. 13, n. 5. 2018.
- NEIDE, I. G; MAMAN, A. S.; DULLIUS, M. M.; BERGMANN, A. B.; QUARTIERI, M. T. Percepções dos professores sobre o uso do software Modellus em uma experiência de modelagem. **Caderno Brasileiro de Ensino de Física**, Florianópolis, v. 36, n. 2, p. 567-588, ago. 2019.
- PAULA, H. F. Fundamentos Pedagógicos para o Uso de Simulações e Laboratórios Virtuais no Ensino de Ciências. **Revista Brasileira de Pesquisa em Educação em Ciências**, Belo Horizonte, v. 17, n. 1, p. 75-103, jan./abr. 2017.
- PEDASTE, M.; MÄEOTS, M.; SIIMAN, L. A.; JONG, T.; VAN RISIEN, S. A. N.; KAMP, E. T.; TSOURLIDAKI, E. Phases of inquiry based learning: definitions and the inquiry cycle. **Educational Research Review**, v. 14, p. 47-61. 2015.
- REIS, G. A.; CAVALCANTE, L. V. S.; OLIVEIRA, E. C. O conceito de Alfabetização Científica e a possibilidade de interações entre cinco competências gerais da Base

- Nacional Comum Curricular BNCC. **Research, Society and Development**, Vargem Grande Paulista, v 9, n 8, p 1-13, e831986507. 2020.
- ROSA, C. T. W. da; LANGARO, R. Alfabetização científica voltada à formação cidadã: análise de uma intervenção didática nos anos iniciais. **ETD Educação Temática Digital**, Campinas, v. 22, n. 2, p. 297–316. 2020.
- SASSERON, L. H. Alfabetização Científica no Ensino Fundamental: Estrutura e Indicadores deste processo em sala de aula. Tese (Doutorado Programa de Pós-Graduação em Educação. Área de Concentração: Ensino de Ciências e Matemática) Faculdade de Educação da Universidade de São Paulo. São Paulo. 2008. p. 265. Disponível em: https://repositorio.usp.br/item/002263232. Acesso em 10 jun. 2019.
- SERWAY, R. A.; JEWETT JR. J.W. **Physics for Scientists and Enginieers**. 6 ed. ISBN-13 9780534409562. 2003.
- ZÔMPERO, A. F.; GONÇALVES, C. E. S; LABURÚ, C. E. Atividades de investigação na disciplina de Ciências e desenvolvimento de habilidades cognitivas relacionadas a funções executivas. **Ciência & Educação**, Bauru, v. 23, n. 2, p. 419-436. 2017.
- ZÔMPERO, A. F.; LABURÚ, C. E. Atividades investigativas no ensino de ciências: aspectos históricos e diferentes abordagens. **Rev. Ensaio Pesquisa em Educação em Ciências**, Belo Horizonte, v. 13, n. 3, p. 67-80, 2011.
- ZÔMPERO, A. F.; LABURÚ, C; VILAÇA, T. Instrumento analítico para avaliar habilidades cognitivas dos estudantes da educação básica nas atividades de investigação. **Investigações em Ensino de Ciências**, Porto Alegre, vol. 24 n. 2, 2019, pp. 200-211.

APÊNDICE A – Quadro para avaliar a presença dos indicadores da Alfabetização Científica

Para facilitar a análise e verificar quais os indicadores da Alfabetização Científica podem aparecer durante as atividades propostas na Sequência de Ensino Investigativo proposta, foi criado um quadro para o professor preencher.

Na primeira coluna, transcreva o fragmento que deseja analisar, pode ser uma parte das falas dos estudantes durante as aulas e dos vídeos confeccionados por eles ou do relatório entregue pelas equipes. Nas demais colunas, denominadas pelas letras de A a J, marque com a letra "X" quando perceber a presença de um dos indicadores, obedecendo a legenda que está no rodapé do quadro, como pode observar no quadro abaixo.

		INDICADORES DA ALFABETIZAÇÃO CIENTÍFICA									
Fragmento das falas dos participantes duran do relatório dos est		Grupo 1			Grupo 2		Grupo 3				
do relatorio dos estudántes		Α	В	С	D	Е	F	G	Н	I	J
Legenda		1	l .		l		l				
GRUPO 1	GRUPO 2							JPO 3			
A – Seriação de Informações. D – Raciocínio Lógico.			F – Levantamento de Hipóteses.								
B – Organização de Informações. E – Raciocínio Proporcional.			G – Teste de Hipóteses.								
C – Classificação de Informações.		H – Justificativa.									
					revisâ						
				J – E	Explica	acão.					

APÊNDICE B – Instrumento analítico para avaliação das habilidades cognitivas investigativas manifestadas pelos estudantes

Para avaliar e classificar, em três níveis, as habilidades cognitivas investigativas apresentadas durante as atividades, sugerimos utilizar o instrumento analítico adaptado de Zômpero, Laburú e Vilaça (2019).

Para isso, é necessário preencher a coluna denominada "RESULTADO Avaliação da Equipe", que se encontra do lado direito do instrumento. Ela está dividida em três partes, sendo a primeira denominada de "Atividade 1", para avaliar as habilidades cognitivas investigativas apresentadas na segunda etapa da Sequência de Ensino Investigativo, nomeada de "Abordagem conceitual eletromagnetismo". A coluna "Atividade 2" para as manifestadas durante as atividades experimentais no simulador *PhET*, na terceira etapa. E por fim, a "Atividades 3 e 4" para as etapas quatro, "Vantagens e desvantagens das usinas de geração de energia elétrica", e cinco, "Conscientização da sociedade sobre a necessidade de economizar energia", que devem ser avaliadas em conjunto, pois são atividades que se complementam.

Para facilitar o preenchimento, enumere as equipes e as identifique pela letra E, seguida do número que as representam, como por exemplo, E1, E2, E3..., e anoteas nas colunas de acordo com os níveis atingidos em cada características das etapas investigativas propostas no instrumento analítico.

	ETAPA INVESTIGATIVA			NÍVEIS	RESULTADO Avaliação da Equipe				
	CARACTERÍSTICAS	DESCRIÇÃO	NÍVEL DESCRIÇÃO		Atividade 1	Atividade 2	Atividades 3 e 4		
0	Problema		N1	Não identifica					
açã		Identificação dos elementos constituintes do problema	N2	Identificação parcial					
aliza		constituintes do problema	N3	Identificação Completa					
Conceitualização			N1	Não emitiu hipótese					
nce	Hipóteses	Emissão de hipóteses com base no problema	N2	Hipótese não direcionada ao problema					
ŏ			N3	Hipótese coerente com o problema					
	Planejamento para investigação/ Confronto de hipóteses	Realiza um planejamento de atividades coerente com a hipótese emitida.	N1	Não propõe o planejamento/ou Planejamento incoerente com a hipótese					
			N2	Planejamento parcialmente coerente com a hipótese					
ıçãc			N3	Planejamento coerente com a hipótese					
iga		Identificam evidências e as relacionam para confirmar ou não as hipóteses.	N1	Não identifica evidências					
Investigação	Percepção de evidências		N2	Identificação parcial de evidências relacionada com a hipótese					
1			N3	Identificação das evidências e relações com as hipóteses					
	Registro e análise de dados	Registra e analisa dados com base em evidências	N1	Não registra e não analisa					
			N2	Registra e analisa parcialmente					
			N3	Registra e analisa coerentemente					
	Estabelecem conexão entre evidências e conhecimento científico	Explicam as evidências com base no conhecimento científico	N1	Não explicam e não estabelecem conexão					
			as e conhecimento base no conhecimento	N2	Explicam e estabelecem conexão parcial				
usão			N3	Explicam e estabelecem conexão coerente					
Conclusão	Comunicação dos resultados	Coordena dados com o problema e hipóteses e conhecimento científico para elaborar uma conclusão (elementos da investigação)	N1	Não Coordena os elementos da investigação					
			N2	Coordena parcialmente os elementos da investigação			_		
			N3	Coordena coerentemente os elementos da investigação					

Fonte: Adaptado de Zômpero, Laburú e Vilaça (2019, p. 206).

APÊNDICE C – Instruções para os experimentos no simulador

INSTRUÇÕES PARA OS EXPERIMENTOS NO SIMULADOR DO LABORATÓRIO DE ELETROMAGNETISMO DE FARADAY *PHET*

Imagens adaptadas e retiradas de www.slidescarnival.com/help-use-presentation-template

Com as hipóteses para todos os questionamentos em mãos, é hora de:

- ✓ Confirmar
- ✓ Refutar
- ✓ Contra-argumentar

Para isso, você e sua equipe devem realizar os experimentos seguindo as instruções. Acesse o link abaixo e realize os experimentos.

<u>https://phet.colorado.edu/sims/cheerpj/faraday/latest/faraday.html?simulation=</u> faraday&locale=pt BR

1º Experimento:

Selecione a aba "Imã em Barra" na parte superior do lado esquerdo da tela e marque as opções "Ver dentro do imã" e "Mostrar campo", logo após, com a duas opções selecionadas, clique em "Inverter polaridade" e observe o que acorre, em seguida, repita a inversão de polaridade. Você também pode clicar em cima do imã e arrastá-lo, colocando primeiramente ao lado direito e depois ao lado esquerdo da bússola. Ver instruções na Figura 1.

Figura 1 – Instrução para o experimento no ambiente ímã de barra do simulador

Fonte: Adaptado de PhET Interactive Simulations, Universidade do Colorado (2012).

Para resolver o 1º questionamento, "o que vai acontecer com a bússola se o imã virar e inverter os polos?", escrever os passos que realizaram para obter os resultados e confirmar ou refutar suas hipóteses, ao fazer isso, vocês precisam justificar embasados no experimento, em pesquisa no livro didático e em uma fonte confiável na internet, revista ou outro livro.

2º Experimento:

Selecione a aba "Solenoide" na parte superior do lado esquerdo da tela e em seguida marque as opções "Mostrar campo" e "Mostrar bússola", logo após, com as duas opções selecionadas, clique em "Inverter polaridade" e observe o que acontece com a lâmpada, inverta novamente quantas vezes achar necessário, repita a inversão de polaridade e observe o que acontece com a bússola. Por fim, clique no imã e faça movimentos de vai e vem próximo ou dentro da espira. Ver instruções na Figura 2.

Arquivo <u>O</u>pções Ajuda Solenoide PhEL Ímá em Barra Eletroímã må em barra Intensidade: 75 % 100 Inverter polaridade ✓ Mostrar campo Mostrar medidor de campo Solenoide Indicador Espiras: Área da espira: 20 100 ✓ Mostrar elétrons

Figura 2 – Instrução para o experimento no ambiente solenoide do simulador

Fonte: Adaptado de PhET Interactive Simulations, Universidade do Colorado (2012).

Para responder o 2º questionamento, "O que vai acontecer se o imã continuar estático, ou seja, parado? E se ele se movimentar na direção da espira e realizar um movimento de vai e vem?", escrever os passos que realizaram para obter os resultados e confirmar ou refutar suas hipóteses, ao fazer isso, vocês precisam

justificar embasados no experimento, em pesquisa no livro didático e em uma fonte confiável na internet, revista ou outro livro.

3º Experimento:

Selecione a aba "Gerador" na parte superior da tela, verifique se as opções "Mostrar campo", "Mostrar bússola" e "Mostrar elétrons" estão selecionadas. Pressione o botão esquerdo do mouse sobre a barra de abrir e fechar o registro da torneira arrastando-a para direita até o meio, ou seja, até a roda d'água atingir 50 RPM, observe o fluxo de água e a luz gerada na lâmpada. Repita o processo arrastando a barra do registro até o final, atingindo 100 RPM, e faça as mesmas observações. Ver instruções na Figura 3.

Laboratório de Eletromagnetismo de Faraday (2.07.01)

Arquivo Opções Ajuda

Imá em Barra Solenoide Eletroímá Transformador Gerador

Pressione o botão esquerdo do mouse sobre a barra indicada e arraste para direita até o meio do registro, observe o fluxo de água, a luz gerada na lampada e o RPM da roda d'água.

Aqora arraste até o final e faça as mesmas observações.

Verificar se as opções mostrar bússola estão selecionadas.

Você pode trocar o indicador para visualizar melhor a corrente alternada.

Verificar se a opção mostrar elétrons esta selecionada.

Reiniciar tudo?

Figura 3 – Instrução para o experimento no ambiente gerador do simulador

Fonte: Adaptado de PhET Interactive Simulations, Universidade do Colorado (2012).

Para coletar os dados do fluxo luminoso durante o experimento, crie uma escala, como por exemplo, ausente, baixo, médio ou alto, e preencha a tabela a seguir:

RPM na roda d'água	Fluxo Luminoso
0	
50	
100	

Para responder o 4º questionamento, "Como gerar energia para acender a lâmpada na imagem? Quais as transformações de energia ocorrem no processo até chegar à energia luminosa?", escrever os passos que realizaram para obter os resultados e confirmar ou refutar suas hipóteses, ao fazer isso, vocês precisam justificar embasados no experimento, em pesquisa no livro didático e em uma fonte confiável na internet, revista ou outro livro.

Para finalizar essa etapa, cada grupo precisa confeccionar um vídeo curto, de no máximo 5 minutos, refazendo os experimentos e explicando, por meio da gravação da tela e com uma narração dos experimentos e dos conceitos envolvidos neles.